Number size distribution of fine and ultrafine fume particles from various welding processes.
نویسندگان
چکیده
Studies in the field of environmental epidemiology indicate that for the adverse effect of inhaled particles not only particle mass is crucial but also particle size is. Ultrafine particles with diameters below 100 nm are of special interest since these particles have high surface area to mass ratio and have properties which differ from those of larger particles. In this paper, particle size distributions of various welding and joining techniques were measured close to the welding process using a fast mobility particle sizer (FMPS). It turned out that welding processes with high mass emission rates (manual metal arc welding, metal active gas welding, metal inert gas welding, metal inert gas soldering, and laser welding) show mainly agglomerated particles with diameters above 100 nm and only few particles in the size range below 50 nm (10 to 15%). Welding processes with low mass emission rates (tungsten inert gas welding and resistance spot welding) emit predominantly ultrafine particles with diameters well below 100 nm. This finding can be explained by considerably faster agglomeration processes in welding processes with high mass emission rates. Although mass emission is low for tungsten inert gas welding and resistance spot welding, due to the low particle size of the fume, these processes cannot be labeled as toxicologically irrelevant and should be further investigated.
منابع مشابه
Characterisation of the biological effect of ultrafine particles in welding fumes after controlled exposure – Effect of the MIG welding of aluminium and the MIG brazing of zinc-coated materials
Long-time exposure to welding fumes is supposed to be responsible for lung disease in some cases [1]. Whether welding fume exposure leads to an impairment of human health seems to be dependent on various factors like fume concentrations, ventilation of the workshops [2, 3], use of personal protection equipment [4-6] and presence of co-factors like cigarette smoking [7]. From different epidemiol...
متن کاملExposure to Inhalable, Respirable, and Ultrafine Particles in Welding Fume
This investigation aims to explore determinants of exposure to particle size-specific welding fume. Area sampling of ultrafine particles (UFP) was performed at 33 worksites in parallel with the collection of respirable particles. Personal sampling of respirable and inhalable particles was carried out in the breathing zone of 241 welders. Median mass concentrations were 2.48 mg m(-3) for inhalab...
متن کاملارزیابی مقایسه ای مواجهه جوشکاران با فیومهای جوشکاری براساس تراکم جرمی و عددی
Introduction: Nowadays, Shielded Metal Arc Welding (SMAW) is the most widely used arc welding. During the welding operation, typically, various harmful agents such as fumes, gases, heat, sound and ultraviolet radiation are produced of which fume is the most important component from the viewpoint of occupational health. The present study aims to compare the number and the mass concentration emit...
متن کاملCharacterization of ambient particles size in workplace of manufacturing physical fitness equipments
The manufacturing of fitness equipment involves several processes, including the cutting and punching of iron tubes followed by welding. Welding operations produce hazardous gases and particulate matter, which can enter the alveolar, resulting in adverse health effects. This study sought to verify the particle size distribution and exposure concentrations of atmospheric air samples in various w...
متن کاملTransport and Deposition of Welding Fume Agglomerates in a Realistic Human Nasal Airway.
Welding fume is a complex mixture containing ultra-fine particles in the nanometer range. Rather than being in the form of a singular sphere, due to the high particle concentration, welding fume particles agglomerate into long straight chains, branches, or other forms of compact shapes. Understanding the transport and deposition of these nano-agglomerates in human respiratory systems is of grea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Annals of occupational hygiene
دوره 57 3 شماره
صفحات -
تاریخ انتشار 2013